Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/2274
Title: Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects
Authors: Damasceno, D. A
Rajapakse, R. K. N. D
Mesquita, E
Pavanello, R
Keywords: Atomistic simulation
tensile
strength properties
graphene
complex vacancy
topological defects
Issue Date: Aug-2020
Publisher: Springer Vienna
Citation: Damasceno, D.A., Rajapakse, R.K.N.D., Mesquita, E. et al. Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects. Acta Mech 231, 3387–3404 (2020). https://doi.org/10.1007/s00707-020-02715-6
Series/Report no.: Acta Mechanica;Vol 231 Issue 8 Pages 3387-3404
Abstract: Defects including topological and vacancy defects have been observed in graphene during fabrication. Defects are also introduced to break the lattice symmetry of graphene and thereby obtain enhanced optoelectronic and other properties. It is important that gains in certain properties due to the presence defects are not at the expense of mechanical strength which is important in handling graphene and device fabrication. This paper presents a comprehensive study of the tensile strength and fracture strain of monolayer graphene with commonly observed topological defects and nanopores. Both molecular dynamics and the atomic-scale finite element method (AFEM) are used in this study, and the accuracy of AFEM in simulating complex topological and vacancy defects including line defects is established. It is found that the tensile strength properties have a complex dependency on the defect shape, size, and chirality. Certain defect geometries are found to be mechanically superior to other defect geometries thereby supporting the concept of topological design of graphene to optimize properties. The study also establishes AFEM as an efficient and potential tool for topological optimization of the mechanical behaviour of graphene.
URI: http://rda.sliit.lk/handle/123456789/2274
Appears in Collections:Department of Civil Engineering-Scopes
Research Papers - Department of Civil Engineering
Research Papers - Open Access Research
Research Papers - SLIIT Staff Publications

Files in This Item:
File Description SizeFormat 
Damasceno2020_Article_AtomisticSimulationOfTensileSt (1).pdf4.72 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.