Please use this identifier to cite or link to this item: https://rda.sliit.lk/handle/123456789/804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPulasinghe, K-
dc.contributor.authorRajapakse, J. C-
dc.date.accessioned2022-01-28T04:07:55Z-
dc.date.available2022-01-28T04:07:55Z-
dc.date.issued2005-03-30-
dc.identifier.isbn978-3-540-25396-9-
dc.identifier.urihttp://localhost:80/handle/123456789/804-
dc.description.abstractThis paper exploits “biological grammar” of transmembrane proteins to predict their membrane spanning regions using hidden Markov models and elaborates a set of syntactic rules to model the distinct features of transmembrane proteins. This paves the way to identify the characteristics of membrane proteins analogous to the way that identifies language contents of speech utterances by using hidden Markov models. The proposed method correctly predicts 95.24% of the membrane spanning regions of the known transmembrane proteins and correctly predicts 79.87% of the membrane spanning regions of the unknown transmembrane proteins on a benchmark dataset.en_US
dc.language.isoenen_US
dc.publisherSpringer, Berlin, Heidelbergen_US
dc.relation.ispartofseriesWorkshops on Applications of Evolutionary Computation;Pages 95-104-
dc.subjectHide Markov Modelen_US
dc.subjectTransmembrane Proteinen_US
dc.subjectSyntactic Ruleen_US
dc.subjectHide Markov Model Modelen_US
dc.subjectSyntactic Approachen_US
dc.titleSyntactic Approach to Predict Membrane Spanning Regions of Transmembrane Proteinsen_US
dc.typeArticleen_US
Appears in Collections:Research Papers - SLIIT Staff Publications
Research Publications -Dept of Information Technology

Files in This Item:
File Description SizeFormat 
Pulasinghe-Rajapakse2005_Chapter_SyntacticApproachToPredictMemb.pdf188.71 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.